Abstract

There have been several advancements in the field of myoelectric prostheses to improve dexterity and restore hand grasp patterns for persons with upper limb loss, including robust control strategies, novel sensory feedback, and multifunction prosthetic terminal devices. Although these advancements have shown to improve prosthesis performance, a key element that may further improve acceptance is often overlooked. Embodiment, which encompasses the feeling of owning, controlling and locating the device without the need to constantly look at it, has been shown to be affected by sensory feedback. However, the specific aspects of embodiment that are influenced are not clearly understood, particularly when a prosthesis is actively controlled. In this work, we used a sensorized simulated prosthesis in able-bodied participants to investigate the contribution of sensory feedback, active motor control, and the combination of both to the components of embodiment; using a common methodology in the literature, namely the rubber hand illusion (RHI). Our results indicate that (1) the sensorized simulated prosthesis may be embodied by able-bodied users in a similar fashion as prosthetic devices embodied by persons with upper limb amputation, and (2) mechanotactile sensory feedback might not only be useful for improving certain aspects of embodiment, i.e., ownership and location, but also may have a modulating effect on other aspects, namely sense of agency, when provided asynchronously during active motor control tasks. This work may allow us to further investigate and manipulate factors contributing to the complex phenomenon of embodiment in relation to active motor control of a device, enabling future study of more precise quantitative measures of embodiment that do not rely as much on subjective perception.

Highlights

  • Persons with upper limb amputation face significant limitations in performing activities of daily living

  • Embodiment is thought to involve sub-components of ownership, location and agency (Ehrsson et al, 2004; Longo et al, 2008)

  • Simulated upper-limb prosthesis systems are commonly used as an approximation to prostheses used by persons with upper-limb amputation, as a method of allowing able-bodied participants to actively control a prosthetic hand in a situation more similar to actual prosthesis use

Read more

Summary

Introduction

Persons with upper limb amputation face significant limitations in performing activities of daily living. Embodiment is thought to involve sub-components of ownership (the feeling that the hand is a part of the body), location (the sensation that the hand is in an appropriate area and that a relationship exists between what is seen in that area and where it is felt on the hand) and agency (a feeling of control over the actions of the hand) (Ehrsson et al, 2004; Longo et al, 2008) These items interrelate and may result in a foreign object, such as the prosthetic hand, being integrated into the body schema (Gallagher and Cole, 1995), which may increase acceptance and use of the prosthesis

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call