Abstract

Enterochromaffin (EC) cells synthesize 95% of the body 5-HT and release 5-HT in response to mechanical or chemical stimulation. EC cell 5-HT has physiological effects on gut motility, secretion and visceral sensation. Abnormal regulation of 5-HT occurs in gastrointestinal disorders and Inflammatory Bowel Diseases (IBD) where 5-HT may represent a key player in the pathogenesis of intestinal inflammation. The focus of this review is on mechanism(s) involved in EC cell “mechanosensation” and critical gaps in our knowledge for future research. Much of our knowledge and concepts are from a human BON cell model of EC, although more recent work has included other cell lines, native EC cells from mouse and human and intact mucosa. EC cells are “mechanosensors” that respond to physical forces generated during peristaltic activity by translating the mechanical stimulus (MS) into an intracellular biochemical response leading to 5-HT and ATP release. The emerging picture of mechanosensation includes Piezo 2 channels, caveolin-rich microdomains, and tight regulation of 5-HT release by purines. The “purinergic hypothesis” is that MS releases purines to act in an autocrine/paracrine manner to activate excitatory (P2Y1, P2Y4, P2Y6, and A2A/A2B) or inhibitory (P2Y12, A1, and A3) receptors to regulate 5-HT release. MS activates a P2Y1/Gαq/PLC/IP3-IP3R/SERCA Ca2+signaling pathway, an A2A/A2B–Gs/AC/cAMP-PKA signaling pathway, an ATP-gated P2X3 channel, and an inhibitory P2Y12-Gi/o/AC-cAMP pathway. In human IBD, P2X3 is down regulated and A2B is up regulated in EC cells, but the pathophysiological consequences of abnormal mechanosensory or purinergic 5-HT signaling remain unknown. EC cell mechanosensation remains poorly understood.

Highlights

  • The enterochromaffin cell (EC) synthesizes and releases 5hydroxytryptamine (5-HT), which is involved in mucosal secretory reflexes, motility and transmission of information about visceral pain sensation (Cooke and Christofi, 2006; Christofi, 2008; Mawe and Hoffman, 2013)

  • ATP release (Linan-Rico et al, 2013a) and adenosine release (Christofi et al, 2004b) is shown to occur during mechanical stimulus (MS) of BON cells, but it is possible that UTP is released by EC cells and surrounding epithelial cells, it has not yet been shown to occur. It is not known whether the same or different mechanosensory— mechanotransduction pathways, including those involved in releasing purines (ATP and UTP) operate in EC cells and surrounding epithelial cells during peristalsis

  • The focus of studies on mechanotransduction in EC cells studied in BON cells, other cell lines, mouse EC cells or most recently human EC cells refer to purinergic autocrine modulation of 5-HT release by ATP, UTP and adenosine for moment-to-moment fine-tune modulation of 5-HT release from EC cells

Read more

Summary

Frontiers in Neuroscience

Received: 03 October 2016 Accepted: 22 November 2016 Published: 19 December 2016. Citation: Linan-Rico A, Ochoa-Cortes F, Beyder A, Soghomonyan S, Zuleta-Alarcon A, Coppola V and Christofi FL (2016) Mechanosensory Signaling in Enterochromaffin Cells and 5-HT Release: Potential Implications for Gut Inflammation. Enterochromaffin (EC) cells synthesize 95% of the body 5-HT and release 5-HT in response to mechanical or chemical stimulation. Abnormal regulation of 5-HT occurs in gastrointestinal disorders and Inflammatory Bowel Diseases (IBD) where 5-HT may represent a key player in the pathogenesis of intestinal inflammation. EC cells are “mechanosensors” that respond to physical forces generated during peristaltic activity by translating the mechanical stimulus (MS) into an intracellular biochemical response leading to 5-HT and ATP release. The emerging picture of mechanosensation includes Piezo 2 channels, caveolin-rich microdomains, and tight regulation of 5-HT release by purines. The “purinergic hypothesis” is that MS releases purines to act in an autocrine/paracrine manner to activate excitatory (P2Y1, P2Y4, P2Y6, and A2A/A2B) or inhibitory (P2Y12, A1, and A3) receptors to regulate 5-HT release. MS activates a P2Y1/Gαq/PLC/IP3-IP3R/SERCA Ca2+signaling pathway, an A2A/A2B–Gs/AC/cAMP-PKA signaling pathway, an ATP-gated P2X3 channel, and an inhibitory P2Y12-Gi/o/AC-cAMP pathway.

INTRODUCTION
The Human BON Cell Model
Similarities and Differences between Primary EC Cells and BON Cells
Are GPCRs Mechanosensors?
Future Directions
SUMMARY AND CONCLUSIONS
AUTHOR CONTRIBUTIONS
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.