Abstract
A simple theoretical model considering cell membrane mechanosensitivity can accurately describe published experimental data on membrane area creeping and recovery, and on osmotic expansion and rupture. The model to data fit reveals real values of membrane tension and elasticity modulus, and the parameters describing membrane organization and kinetics of mechanosensitive membrane traffic, including small solute transport, water permeability, endocytosis, exocytosis, and caveolae formation. This estimation allows for separation and quantitative analysis of the participation of different processes constituting the response of plasmalemma to short time-scale membrane load. The predicted properties of the model were verified for membrane stretching at different osmotic pressures. Finally, a simple hypothesis concerning stressed cell membrane breakdown is postulated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.