Abstract

Mechanical loading is essential for maintaining bone health. Here, we aimed to investigate the role of ATP and ADP in the mechanotransduction of bone-resorptive osteoclasts. Single osteoclast in primary cultures from 10 to 12-wk-old mice was mechanically stimulated by a gentle touch with a micropipette. Changes in cytosolic free calcium [Ca2+]i were analyzed in Fura-2 loaded osteoclasts. The cell injury was assessed by analyzing the cellular Fura-2 loss and classified as severe or mild using k-means. Osteoclasts responded to mechanical stimuli with transient calcium elevation (primary responders) and transduced these signals to neighboring cells, which responded with delayed calcium elevations (secondary responders). Severely injured osteoclasts had higher calcium transients than mildly injured cells. Fluid shear stress similarly induced reversible cell injury in osteoclasts. Secondary responses were abolished by treatment with A-804598, a specific inhibitor of P2X7, but not suramin, a broad P2 receptor blocker. Osteoclasts responded to ATP and ADP with concentration-dependent changes in [Ca2+]i. We performed osteoclast micropipette stimulation in the presence of phosphoenolpyruvate and pyruvate kinase which converted all ADP in solution to ATP, or with hexokinase converting all ATP to ADP. Osteoclasts with mild membrane injury demonstrated similar calcium responses in ATP and ADP-rich environments. However, when the mechanotransductive signal to severe osteoclast injury was converted to ADP, the fraction of secondary responders and their [Ca2+]i amplitude was higher. This study suggests the importance of osteoclast mechanobiology and the role of ADP-mediated signaling in conditions of altered mechanical loading associated with bone loss.NEW & NOTEWORTHY Osteoclasts are rarely considered as cells that participate in mechanical signaling in bone. We show that osteoclasts are capable of sensing and transmitting mechanical signals to neighboring cells. Mechanical stimulation commonly induces minor repairable membrane injury in osteoclasts. ATP and especially ADP were found to play important roles in the mechanoresponsiveness of osteoclasts. This study highlights the importance of osteoclast mechanobiology especially in conditions of altered mechanical loading associated with bone loss, such as in microgravity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call