Abstract

Self-assembly and force generation are two central processes in biological systems that usually are considered in separation. However, the signals that activate nonmuscle myosin II molecular motors simultaneously lead to self-assembly into myosin II minifilaments as well as progression of the motor heads through the cross-bridge cycle. Here we investigate theoretically the possible effects of coupling these two processes. Our assembly model, which builds on a consensus architecture of the minifilament, predicts a critical aggregation concentration at which the assembly kinetics slows down dramatically. The combined model predicts that increasing actin filament concentration and force both lead to a decrease in the critical aggregation concentration. We suggest that due to these effects, myosin II minifilaments in a filamentous context might be in a critical state that reacts faster to varying conditions than in solution. We finally compare our model to experiments by simulating fluorescence recovery after photobleaching.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.