Abstract

AbstractThe sustainable synthesis of macromolecules with control over sequence and molar mass remains a challenge in polymer chemistry. By coupling mechanochemistry and electron‐transfer processes (i.e., mechanoredox catalysis), an energy‐conscious controlled radical polymerization methodology is realized. This work explores an efficient mechanoredox reversible addition‐fragmentation chain transfer (RAFT) polymerization process using mechanical stimuli by implementing piezoelectric barium titanate and a diaryliodonium initiator with minimal solvent usage. This mechanoredox RAFT process demonstrates exquisite control over poly(meth)acrylate dispersity and chain length while also showcasing an alternative to the solution‐state synthesis of semifluorinated polymers that typically utilize exotic solvents and/or reagents. This chemistry will find utility in the sustainable development of materials across the energy, biomedical, and engineering communities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call