Abstract

The study addresses the phenomenon of mechanoelectrical transduction in polyelectrolyte hydrogels and, in particular, the search of the driving force for the change of the electrical potential of a gel under the applied mechanical stretch. Polyelectrolyte gels of calcium and magnesium salts of polymethacrylic acid were synthesized by the radical polymerization in water solution. Their electrical potential measured by microcapillary electrodes was negative and fall within 100⬜140mV range depending on the nature of a counterion and the networking density of a gel. The rectangular samples (↼10mm in length and 2Ô2mm in cross-section) of gel-based sensors underwent the dynamic axial deformation, and the simultaneous monitoring of their geometrical dimensions and the electrical potential was performed. Sensor elongation resulted in the overall increase of gel volume, and it was always accompanied by the gel potential change toward the depolarization (diminishing of the negative values). Theoretical model based on the assumption of the total electrical charge conservation in the course of the dynamic deformation of a filament was proposed to describe the dependence of the electrical potential of a gel on its volume. Good agreement between the predictions of the model and the experimental trend was shown. The proposed mechanism of mechanoelectrical transduction based on the stretch-dependant volume changes in polyelectrolyte hydrogels might be useful to understand the nature of mechanical sensing in much more complex biological gels like the cell cytoskeleton.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.