Abstract

Endowing a cholesteric liquid crystal elastomer (CLCE) exhibiting a helicoidal nanostructure with dynamically tailorable functionalities is of paramount significance for its emerging applications in diverse fields such as adaptive optics and soft robotics. Here, a mechanochromic, shape-programmable and self-healable CLCE is judiciously designed and synthesized through integrating dynamic covalent boronic ester bonds into the main-chain CLCE polymer network. The circularly polarized reflection of CLCEs can be reversibly and dynamically tuned across the entire visible spectrum by mechanical stretching. Thanks to the introduction of dynamic boronic ester bonds, the CLCEs were found to show robust reprogrammable and self-healing capabilities. The research disclosed herein can provide new insights into the development of 4D (color and 3D shape) programmable photonic actuators towards bioinspired camouflage, adaptive optical systems, and next-generation intelligent machines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.