Abstract

It is challenging to develop materials with room-temperature self-healing ability and mechanochromic response from mechanical stimuli to optical signals by a facile and simple preparation process. Herein, novel mechanochromic self-healing materials were designed by a simple synthesis procedure, balancing the mechanical properties, self-healing, stretchability, and mechanochromic response. Moreover, we designed and prepared the mechanochromic self-healing materials with different soft and hard segments by introducing multiple hydrogen bonds into the network, improving the mechanical properties and self-healing efficiency. In addition, the optimized sample exhibited good shape memory behavior (shape recovery ratio of 94.4%), self-healing properties (healed by pressing during stretching process), high tensile strength (17.6 MPa), superior stretchability (893%), fast mechanochromic response (strain of 272%), and great cyclic stretching-relaxing properties (higher than 10 times at strain of 300%). Above all, mechanochromic self-healing materials have promising potential in various fields, such as stress sensing, inkless writing, damage warning, deformation detection, and damage distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call