Abstract

We report the mechanochemical reactivity of the highly strained pentacyclic hydrocarbon cubane. The mechanical reactivity of cubane is explored for three regioisomers with 1,2-, 1,3-, and 1,4-substituted pulling attachments. Whereas all compounds can be activated thermally, mechanical activation is observed via pulsed ultrasonication of cubane-containing polymers only when force is applied via 1,2-attachment. The single observed product of the force-coupled reaction is a thermally inaccessible syn-tricyclooctadiene, in contrast to cyclooctatetraene (observed thermally) or a pair of cyclobutadienes that would result from sequential cyclobutane scission. We further quantify the mechanochemical reactivity of cubane by single molecule force spectroscopy, and force-coupled rate constants for ring opening reach ∼33 s-1 at a force of ∼1.55 nN, lower than forces of 1.8-2.0 nN that are typical of conventional cyclobutanes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call