Abstract

AbstractQuantitative and real-time characterization of mechanically induced bond-scission events taken place in polymeric hydrogels is essential to uncover their fracture mechanics. Herein, a class of mechanochemiluminescent swelling hydrogels have been synthesized through a facile micellar copolymerization method using chemiluminescent bisacrylate-modified bis(adamantyl)-1,2-dioxetane (Ad) as a crosslinker. This design and synthetic strategy ensure intense mechanochemiluminescence from Ad located in a hydrophobic network inside micelles. Moreover, the mechanochemiluminescent colors can be tailored from blue to red by mixing variant acceptors. Taking advantages of the transient nature of dioxetane chemiluminescence, the damage distribution and crack evolution of the hydrogels can be visualized and analyzed with high spatial and temporal resolution. The results demonstrate the strengths of the Ad mechanophore and micellar copolymerization method in the study of damage evolution and fracture mechanism of swelling hydrogels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call