Abstract

This publication highlights the use of a high-speed thermokinetic mixer as an alternative to recycling ground tire rubber (GTR) using mechanochemical treatment. The GTR initially had a gelled fraction of 80% and presented a reduction of up to 50% of gel fraction in the most intensive condition (5145 rpm, n2). The processing condition at the lowest speed (2564 rpm, n1) resulted in greater selectivity in chain scission (K~1). However, in the most intense processing condition (10 min to n2), more significant degradation was observed via random scission, reduction in the glass transition temperature, Tg (11 °C), increase in the soluble polymeric fraction, and a more significant reduction in the density of bonds occurs. The artificial neural network could describe and correlate the thermal degradation profile with the processing conditions and the physicochemical characteristics of the GTR. The n2 velocity resulted in the formation of particles with a smoother and more continuous surface, which is related to the increase in the amount of soluble phase. The approach presented here represents an alternative to the mechanochemical treatment since it can reduce the crosslink density with selectivity and in short times (1–3 min).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.