Abstract

Catalysts derived from pyrolysis of metal organic frameworks (MOFs) are promising candidates to replace expensive and scarce platinum-based electrocatalysts commonly used in polymer electrolyte membrane fuel cells. MOFs contain ordered connections between metal centers and organic ligands. They can be pyrolyzed into metal- and nitrogen-doped carbons, which show electrocatalytic activity toward the oxygen reduction reaction (ORR). Furthermore, metal-free heteroatom-doped carbons, such as N-F-Cs, are known for being active as well. Thus, a carbon material with Co-N-F doping could possibly be even more promising as ORR electrocatalyst. Herein, we report the mechanochemical synthesis of two polymorphs of a zeolitic imidazole framework, Co-doped zinc 2-trifluoromethyl-1H-imidazolate (Zn0.9Co0.1(CF3-Im)2). Time-resolved in situ X-ray diffraction studies of the mechanochemical formation revealed a direct conversion of starting materials to the products. Both polymorphs of Zn0.9Co0.1(CF3-Im)2 were pyrolyzed, yielding Co-N-F containing carbons, which are active toward electrochemical ORR.

Highlights

  • Polymer membrane fuel cells (PMFCs) are of significant interest as a device for clean energy conversion

  • The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author

  • All authors have contributed to the work and approved the final version of the manuscript

Read more

Summary

INTRODUCTION

Polymer membrane fuel cells (PMFCs) are of significant interest as a device for clean energy conversion. Using zinc-based ZIFs with low amounts of cobalt results in a porous carbon material with uniformly distributed Co-N4 sites and no metallic cobalt particles, showing excellent ORR activity (Wang et al, 2016). For Co-doping, the zinc acetate dihydrate was replaced by cobalt acetate tetrahydrate (10 mol% of total metal content, 0.037 mmol, 9.2 mg), which was added to the milling jar (PMMA, 5 mL), along with ZnO (0.333 mmol, 27.1 mg), 2methylimidazole (0.740 mmol, 60.7 mg), NH4NO3 (0.037 mmol, 3.0 mg), methanol (15 μL), and a stainless-steel grinding ball (7mm diameter). Zn0.9Co0.1(CF3-Im) can be obtained when Zn5(CO3)2(OH) (0.046 mmol, 25.0 mg), cobalt acetate tetrahydrate (0.025 mmol, 6.3 mg), and 2-trifluoromethyl-1H-imidazol (0.505 mmol, 68.8 mg) are placed alongside a single grinding ball (5-mm diameter, stainless steel) into a custom-made milling jar (PMMA, 5 mL). Nitrogen gas sorption at 77 K was performed on an ASAP 2020 (Micrometrics) and was used to calculate the specific surface area from a multipoint adsorption isotherm with the BET (Brunauer–Emmit–Teller) calculation model (relative pressure range, 0.0012–0.0298) according to DIN ISO 9277:2014 (Brunauer et al, 1938)

RESULTS AND DISCUSSION
Summary
DATA AVAILABILITY STATEMENT

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.