Abstract

A versatile, low-energy and solvent-free method to access nanoparticles (NPs) of four different transition metals, based on a bottom-up mechanochemical procedure involving milling of inorganic precursors, is presented. Lignin, a biomass waste, was used effectively as a reducing agent, for the first time in a mechanochemical context, to access MNPs where M = Au, Pd, Ru, Re. A series of metal precursors was used for this reaction and their nature was shown to be integral in determining whether NPs became incorporated within the organic lignin matrix, M@lignin, or not. Specifically, organometallic precursors resulted in extensive encapsulation of the NPs, as well as improved control over their size and shape, while ionic precursors afforded matrix-free NPs. The resulting NP-containing composites were characterized through Fourier-transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and powder X-ray diffraction (PXRD). This mechanochemical grinding method for accessing M@lignin (M = Au, Pd, Ru and Re) is significantly more sustainable than the traditional solvent batch syntheses of metal NPs because it relies on the use of a biomass-based polymer, it is highly atom economical, it eliminates the need for solvents and it reduces drastically the energy input.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call