Abstract

Soil contamination caused by persistent organic pollutants (POPs) has been a worldwide concern for decades. With lindane-contaminated soil as the target, a mechanochemical method assisted by CaO was comprehensively evaluated in terms of its remediation performance, degradation mechanism and overall assessment. The mechanochemical degradation performance of lindane in cinnamon soil or kaolin was determined under different additives, lindane concentrations and milling conditions. 2,2-Diphenyl-1-(2,4,6-trinitrophenyl) hydrazinyl free radical (DPPH•) and electron spin resonance (ESR) tests evidenced that the degradation of lindane in soil was caused mainly by the mechanical activation of CaO to produce free electrons (e-) and the alkalinity of the generated Ca(OH)2. Dehydrochlorination or dechlorination by elimination, alkaline hydrolysis, hydrogenolysis and the subsequent carbonization were the main degradation pathways of lindane in soil. The main final products included monochlorobenzene, carbon substances and methane. The mechanochemical method with CaO was proved to also efficiently degrade lindane in three other soils and other hexachlorocyclohexane isomers and POPs in soil. The soil properties and soil toxicity after remediation were assessed. This work presents a relatively clear discussion of various aspects of the mechanochemical remediation of lindane-contaminated soil assisted by CaO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call