Abstract
Inelastic collisions of the milling media in ball milling provide energy to the reaction mixture required for chemical transformations. However, movement of the milling media also results in physical mixing of reactants, which may enable a chemical reaction too. Separating the two contributions is challenging and gaining a direct insight into the purely mechanochemically driven reactivity is accordingly hindered. Here, we have applied in situ reaction monitoring by Raman spectroscopy to a suitable, purely mechanically activated, chemical reaction and combined kinetic analysis with numerical simulations to access experimentally unattainable milling parameters. The breadth of milling conditions allows us to establish a linear relationship between the reaction rate and the energy dose received by the sample. Consequently, different kinetic profiles in time scale to the same profile when plotted against the energy dose, which increases with the ball mass, the average ball velocity and the frequency of impacts, but decreases with the hardness of the milling media due to more elastic collisions. The fundamental relationship between kinetics and energy input provides the basis for planning and optimisation of mechanochemical reactions and is essential for transferability of mechanochemical reactions across different milling platforms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.