Abstract

Lithium titanates are used in various applications, such as anode materials for lithium intercalation (Li4Ti5O12) or breeding materials in fusion reactors (Li2TiO3). Here, we report the formation of nano-crystalline lithium titanates by a mechanochemical approach and present a deeper insight into their structural characteristics by X-ray diffraction (XRD) and solid-state NMR spectroscopy. The compounds were synthesized in a high-energy planetary ball mill with varying milling parameters and different grinding tools. NaCl type Li2TiO3 (α-Li2TiO3) was formed by dry milling of lithium hydroxide with titania (rutile or anatase) and by a milling induced structure transformation of monoclinic β-Li2TiO3 or spinel type Li4Ti5O12. Heating of mechanochemical prepared α-Li2TiO3 induces a phase transformation to the monoclinic phase similar to hydrothermal reaction products, but a higher thermal stability was observed for the mechanochemical formed product. Microstructure and crystallographic structure were characterized by XRD via Rietveld analysis. Detailed phase analysis shows the formation of the cubic phase from the various educts. A set of two lattice parameters for α-Li2TiO3 was refined, depending on the presence of OH− during the milling process. An average crystallite size of less than 15 nm was observed for the mechanochemical generated products. The local Li environment detected by 6Li NMR revealed Li defects in the form of tetrahedral instead of octahedral site occupation. Subsequent adjustment of the structural model for Rietveld refinement leads to better fits, supporting this interpretation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.