Abstract

The abrasion of synthetic textile fibers is a significant factor in the generation of environmental microplastic fibers (MPFs). The extent to which polymer sponges designed specifically for surface cleaning have a tendency to release MPFs during normal use remains unknown. Here, the tribological behaviors of melamine cleaning sponges (also known as "magic erasers") with different strut densities against metal surfaces of different roughness were investigated using a reciprocating abrader. The MPFs formed by sponge wear under various conditions were characterized in terms of their morphology, composition, and quantity. They were mainly composed of poly(melamine-formaldehyde) polymer with linear or branched fiber morphologies (10-405 μm in length), which were formed through deformation and fracture of the struts within open cells of the sponges, facilitated by friction-induced polymer decomposition. The rate and capability of MPF production generally increased with increasing roughness of the metal surface and density of the struts, respectively. The sponge wear could release 6.5 million MPFs/g, which could suggest a global overall emission of 4.9 trillion MPFs due to sponge consumption. Our study reveals a hitherto unrecognized source of the environmental MPF contamination and highlights the need to evaluate exposure risks associated with these new forms of MPFs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.