Abstract

Although the use of the insecticide γ-hexachlorocyclohexane (HCH) is now prohibited in many countries because of its hazardousness, stockpiles of γ-HCH still exist. In this study, we subjected γ-HCH to mechanochemical (MC) treatment with a planetary ball mill in the presence of CaO to investigate the feasibility of using this method for the treatment of γ-HCH stockpiles. We confirmed the degradation of γ-HCH and investigated the degradation mechanism. The major intermediates were identified to be 1,3,4,5,6-pentachlorocyclohexene (γ-PCCH) and chlorobenzenes (CBzs). Analysis of the steric structure of γ-HCH and identification of the degradation intermediates suggested that successive dehydrochlorination led to the formation of trichlorobenzenes. Products of further degradation (dichlorobenzenes, monochlorobenzene, and benzene) were also detected. Surprisingly, methane and ethane were also detected, which suggests cleavage of the C–C bonds of the cyclohexane ring and hydrogenation. All of the chlorine atoms in the γ-HCH could be transformed into inorganic chloride compounds by the MC treatment with CaO. Our results indicate that γ-HCH can be completely dechlorinated by MC treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.