Abstract

Birch reduction and similar dissolved metal-type transformations hold significant importance in the organic synthesis toolbox. Historically, the field has been dominated by alkali metal reductants. In this study, we report that largely neglected, low-reactive alkaline earth metals can become powerful and affordable reductants when used in a ball mill under essentially solvent-free conditions, in the presence of ethylenediamine and THF as liquid additives. Calcium can reduce both electron-deficient and electron-rich arenes, with yields of products similar to those obtained with lithium metal. Magnesium reveals enhanced reducing power, enabling the reduction of benzoic acids while keeping electron-rich aromatic moieties intact and allows for chemoselective transformations. The developed mechanochemical approach uses readily available and safer-to-handle metals, operates under air and ambient temperature conditions, and can be used for gram-scale preparations. Finally, we demonstrate that the developed conditions can be used for other dissolved metal-type reductive transformations, including reductive amination, deoxygenation, dehalogenation, alkene and alkyne reductions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.