Abstract
Self-propelled nanoparticles moving through liquids offer the possibility of creating advanced applications where such nanoswimmers can operate as artificial molecular-sized motors. Achieving control over the motion of nanoswimmers is a crucial aspect for their reliable functioning. While the directionality of micron-sized swimmers can be controlled with great precision, steering nano-sized active particles poses a real challenge. One of the reasons is the existence of large fluctuations of active velocity at the nanoscale. Here, we describe a mechanism that, in the presence of a ratchet potential, transforms these fluctuations into a net current of active nanoparticles. We demonstrate the effect using a generic model of self-propulsion powered by chemical reactions. The net motion along the easy direction of the ratchet potential arises from the coupling of chemical and mechanical processes and is triggered by a constant, transverse to the ratchet, force. The current magnitude sensitively depends on the amplitude and the periodicity of the ratchet potential and the strength of the transverse force. Our results highlight the importance of thermodynamically consistent modeling of chemical reactions in active matter at the nanoscale and suggest new ways of controlling dynamics in such systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.