Abstract

Convergence extension, the simultaneous elongation of tissue along one axis while narrowing along a perpendicular axis, occurs during embryonic development. A fundamental process that contributes to shaping the organism, it happens in many different species and tissue types. Here, we present a minimal continuum model, that can be directly linked to the controlling microscopic biochemistry, which shows spontaneous convergence extension. It is comprised of a 2D viscoelastic active material with a mechanochemical active feedback mechanism coupled to a substrate via friction. Robust convergent extension behavior emerges beyond a critical value of the activity parameter and is controlled by the boundary conditions and the coupling to the substrate. Oscillations and spatial patterns emerge in this model when internal dissipation dominates over friction, as well as in the active elastic limit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call