Abstract
With the ongoing obesity epidemic, the prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is expected to rise and necessitates a greater understanding of how the disease proceeds from benign excess lipid in hepatocytes to liver fibrosis and eventually to liver cancer. MASLD is caused, at least in part, by hepatocytes' storage of free fatty acids (FAs) that dysfunctional adipocytes are no longer able to store, and therefore, MASLD is a disease that involves both the liver and adipose tissues. The disease progression is not only facilitated by biochemical signals, but also by mechanical cues such as the increase in stiffness often seen with fibrotic fatty livers. The change in stiffness and accumulation of excess lipid droplets impact the ability of a cell to mechanosense and mechanotranduce, which perpetuates the disease. A mechanosensitive protein that is largely unexplored and could serve as a potential therapeutic target is the intermediate filament vimentin. In this review, we briefly summarize the recent research on hepatocyte and adipocyte mechanobiology and provide a synopsis of studies on the varied, and sometimes contradictory, roles of vimentin. This review is intended to benefit and encourage future studies on hepatocyte and adipocyte mechanobiology in the context of MASLD and obesity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.