Abstract

Hepatic physiology depends on the liver's complex structural composition which among others, provides high oxygen supply rates, locally differential oxygen tension, endothelial paracrine signaling, as well as residual hemodynamic shear stress to resident hepatocytes. While functional improvements were shown by implementing these factors into hepatic culture systems, direct cause-effect relationships are often not well characterized-obfuscating their individual contribution in more complex microphysiological systems. By comparing increasingly complex hepatic in vitro culture systems that gradually implement these parameters, we investigate the influence of the cellular microenvironment to overall hepatic functionality in pharmacological applications. Here, hepatocytes were modulated in terms of oxygen tension and supplementation, endothelial coculture, and exposure to fluid shear stress delineated from oxygen influx. Results from transcriptomic and metabolomic evaluation indicate that particularly oxygen supply rates are critical to enhance cellular functionality-with cellular drug metabolism remaining comparable to physiological conditions after prolonged static culture. Endothelial signaling was found to be a major contributor to differential phenotype formation known as metabolic zonation, indicated by WNT pathway activity. Lastly, oxygen-delineated shear stress was identified to direct cellular fate towards increased hepatic plasticity and regenerative phenotypes at the cost of drug metabolic functionality - in line with regenerative effects observed in vivo. With these results, we provide a systematic evaluation of critical parameters and their impact in hepatic systems. Given their adherence to physiological effects in vivo, this highlights the importance of their implementation in biomimetic devices, such as organ-on-a-chip systems. Considering recent advances in basic liver biology, direct translation of physiological structures into in vitro models is a promising strategy to expand the capabilities of pharmacological models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.