Abstract

Mechanical loosening of an implant is often caused by bone resorption, owing to stress/strain shielding. Adaptive bone remodelling elucidates the response of bone tissue to alterations in mechanical and biochemical environments. This study aims to propose a novel framework of bone remodelling based on the combined effects of bone orthotropy and mechanobiochemical stimulus. The proposed remodelling framework was employed in the finite element model of an implanted hemipelvis to predict evolutionary changes in bone density and associated orthotropic bone material properties. In order to account for variations in load transfer during common daily activities, several musculoskeletal loading conditions of hip joint corresponding to sitting down/up, stairs ascend/descend and normal walking were considered. The bone remodelling predictions were compared with those of isotropic strain energy density (SED)-based, isotropic mechanobiochemical and orthotropic strain-based bone remodelling formulations. Although similar trends of bone resorption were predicted by orthotropic mechanobiochemical (MBC) and orthotropic strain-based models across implanted acetabulum, more volume (10-20%) of bone elements was subjected to bone resorption for the orthotropic MBC model. Higher bone resorption (75-85%) was predicted by the orthotropic strain-based and orthotropic MBC models compared to the isotropic MBC and SED-based models. Higher bone apposition (35-160%) across the implanted acetabulum was predicted by the isotropic MBC model, compared to the SED-based model. The remodelling predictions indicated that a reduction in estrogen level might lead to an increase in bone resorption. The study highlighted the importance of including mechanobiochemical stimulus and bone anisotropy to predict bone remodelling adequately.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call