Abstract
Increasing evidence indicates that cellular metabolism is regulated by mechanical cues from the extracellular environment. Forces transmitted from the microenvironment activate mechanotransduction pathways in the cell, which trigger a cascade of biochemical events that impact cytoskeletal tension, cellular morphology and energy budget available to the cell. Using a nonequilibrium free energy-based theory, we can predict the ATP consumption, contractility, and shape of mesenchymal cancer cells, as well as how cells regulate energy levels dependent on the mechanosensitive metabolic regulator AMPK. The insights from our model can be used to understand the mechanosensitive regulation of metabolism during metastasis and tumor progression, during which cells experience dynamic changes in their microenvironment and metabolic state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.