Abstract

In this work, a mechano-chemical surface modification to improve cutting tool performance is proposed. We applied this surface modification via shot peening the rake faces of high-speed steel tools with a blend of Al2O3 and Cu2S particles that serve as a plastic deformation medium and a chemical precursor, respectively. Orthogonal cutting experiments under base oil lubrication demonstrated that the proposed treatment results in a reduction of cutting and thrust forces, as well as in a reduction of built-up edge formation. These effects are explained by favorable changes in the lubricity and roughness of the rake face, and they suggest that this method has the potential to increase cutting tool life, lower energy consumption, and improve the dimensional accuracy and surface quality of a machined workpiece.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.