Abstract

A Pt(II) complex, bearing an oligo‐ethyleneoxide pendant, is able to self‐assemble in ultralong ribbons that display mechanochromism upon nanoscale mechanical stimuli, delivered through atomic force microscopy (AFM). Such observation paves the way to fine understanding and manipulation of the mechanochromic properties of such material at the nanoscale. AFM allows quantitative assessment of nanoscale mechanochromism as arising from static pressure (piezochromism) and from shear‐based mechanical stimuli (tribochromism), and to compare them with bulk pressure‐dependent luminescence observed with diamond‐anvil cell (DAC) technique. Confocal spectral imaging reveals that mechanochromism only takes place within short distance from the localized mechanical stimulation, which allows to design high‐density information writing with AFM nanolithography applied on individual self‐assembled ribbons. Each ribbon hence serves as an individual microsystem for data storage. The orange luminescence of written information displays high contrast compared to cyan native luminescence; moreover, it can be selectively excited with visible light. In addition, ribbons show photochromism, i.e., the emission spectrum changes upon exposure to light, in a similar way as upon mechanical stress. Photochromism is here conveniently used to conceal and eventually erase information previously written with nanolithography by irradiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.