Abstract
Specifications based on block diagrams and state machines are used to design control software, especially in the certified development of safety-critical applications. Tools like SCADE Suite and Simulink/Stateflow are equipped with compilers that translate such specifications into executable code. They provide programming languages for composing functions over streams as typified by Dataflow Synchronous Languages like Lustre. Recent work builds on CompCert to specify and verify a compiler for the core of Lustre in the Coq Interactive Theorem Prover. It formally links the stream-based semantics of the source language to the sequential memory manipulations of generated assembly code. We extend this work to treat a primitive for resetting subsystems. Our contributions include new semantic rules that are suitable for mechanized reasoning, a novel intermediate language for generating optimized code, and proofs of correctness for the associated compilation passes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.