Abstract

The bond strength between a thermal spray coating and substrate is critical for many applications and is dependent on good substrate surface preparation and optimized spray parameters. While spray parameters are usually carefully monitored and controlled, most surface preparation is carried out by manual grit blasting, with little or no calibration of blast parameters. Blasting is currently highly dependent on operator skill and often surface finish is only assessed visually, meaning a consistent, reproducible surface profile cannot be guaranteed. This paper presents investigations on the effect of blast parameters (including blast pressure, standoff distance, media feed rate, blast angle, traverse speed, and media size) on surface profile for seven different metallic substrates using a mechanized, robotic blasting system and employing a brown fused alumina blast medium. Substrates were characterized using non-contact focus variation microscopy. Average surface roughness was found to be most affected by blast pressure, media size, and traverse speed, while changes to media feed rate and standoff distance had a limited effect on surface profile. Changes to blast angle resulted in limited change to average roughness, but microscopy examinations suggested a change in the mechanism of material removal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.