Abstract

Microplastics are emerging contaminants owing to their occurrence and distribution in everywhere the ecosystem and leading to major environmental problems. Management methods are more suitable for larger-sized plastics. Here, the current study elucidates that, TiO2 photocatalyst under sunlight irradiation actively mitigates polypropylene microplastics (pH 3, 50 h) in an aqueous medium. End of post-photocatalytic experiments, the weight loss percentage of microplastics was 50.5 ± 0.5%. Fourier transforms infrared (FTIR) and nuclear magnetic resonance spectroscopy (1H NMR) spectroscopy results revealed the formation of peroxide and hydroperoxide ions, carbonyl, keto and ester groups at the end of the post-degradation process. Ultraviolet–Visible Diffuse Reflectance spectroscopic (UV – DRS) results showed variation in the optical absorbance of polypropylene microplastics peak values at 219 and 253 nm. Increased the weight percentage of oxygen level due to the oxidation of functional groups and decreased the weight percentage of carbon content in electron dispersive spectroscopy (EDS), probably owing to breakdown of long-chain polypropylene microplastics. In addition, scanning electron microscopy (SEM) microscopic analysis showed the surface having holes, cavities, and cracks on irritated polypropylene microplastics. The overall study and their mechanistic pathway strongly confirmed the formation of reactive oxygen species (ROS) with help of the movement of electrons by photocatalyst under solar irradiation which aids the degradation of polypropylene microplastics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.