Abstract

Cyclotrimerization of alkynes catalyzed by transition metal complexes is a straightforward synthetic method for constructing a benzene skeleton in organic synthesis. Not only mononuclear complexes, but also multinuclear complexes act as catalysts for alkyne cyclotrimerization, and their reaction mechanisms have been intensively investigated toward developing highly efficient and regio- and chemo-selective catalysts. In this review, we summarize stoichiometric and catalytic alkyne coupling reactions on mononuclear and dinuclear scaffolds in relation to the reaction mechanism of alkyne cyclotrimerization, including our recent mechanistic approaches using dinuclear tantalum motifs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.