Abstract
Abstract Free radical induced oxidation/reduction mechanisms of the hazardous water contaminant thiacloprid have been unravelled using pulse radiolysis techniques involving transient spectral analysis and redox titration experiments. The OH-induced oxidation of thiacloprid proceeds with appreciable rate, the reaction rate constant has been determined to be k OH = 4.8 × 10 9 mol −1 L s −1 . The OH attack leaves behind a rather complex free radical system consisting of ∼9% α-aminoalkyl radicals, ∼31% aminyl + aminium nitrogen centred radicals, ∼46% radicals at the sulfur and ∼14% hydroxycyclohexadienyl radical of the pyridyl moiety. Since ∼86% of radicals are formed on the key cyanoiminothiazolidine pharmacophore, OH is anticipated to be an appropriate candidate for inactivation of this biologically active pollutant. The one-electron reduction exerted by e aq − occurs at a diffusion controlled rate. As a result of the e aq − attack pyridinyl radical forms that takes part in subsequent protonation and dechlorination processes. The course of events is anticipated to lead to the destruction of another important part of the molecule in respect to insecticidal activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Photochemistry and Photobiology A: Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.