Abstract

The ZEA (zero valent iron, ethylenediaminetetraacetic acid (EDTA), and air) organic pollutant degradation system has been previously shown to degrade a variety of organic pollutants and chemical warfare agent surrogates; however, mechanistic details and reactive intermediates formed in this system have not been identified. It is hypothesized that the ZEA system produces reactive oxygen species (H2O2, HO•) by the reduction of oxygen by FeIIEDTA(aq). This hypothesis is examined through an electrochemical model of the ZEA system. A carbon basket electrode is used as the reducing agent in place of Fe(0). The FeIIIEDTA complex (0.5 mM) is electrochemically reduced to FeIIEDTA at an applied potential of −120 mV (vs Ag/AgCl) under aerobic conditions. Hydrogen peroxide was observed to form in the presence of the metal complex with a maximum concentration reaching 0.139 mM H2O2 after 3 h of electrolysis. In the absence of FeEDTA, 0.04 mM H2O2 is obtained by the direct reduction of O2 at the electrode surface. Elec...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call