Abstract
In this work, kinetics and mechanism of Ru(III) catalyzed oxidation of cyclohexanone by acidified solution of potassium bromate has been studied. Present study employ mercuric acetate Hg (OAc)2 as a scavenger for Br¯ ion to prevent parallel oxidation by bromine. The kinetics and mechanism have also been studied in the temperature range of 30°C - 45°C. The reaction exhibits first order kinetics with respect to Ru (III), while zero order kinetics with respect to KBrO3 and HClO4. The influence of Hg(OAc)2 and ionic strength on the rate of reaction was found to be insignificant. Positive effect in the reaction mixture was also observed upon addition of chloride ion; while as the negative effect was revealed with acetic acid. A suitable mechanism in conformity with the kinetic observations has been proposed and the rate law is derived on the basis of obtained data. The various activation parameters such as energy of activation (ΔE*), Arrhenius factor (A), entropy of activation (ΔS*) were calculated from the rate measurements at 30°C, 35°C - 40°C and 45°C.
Highlights
Catalysis by transition metals plays a significant role in understanding the mechanism of redox reactions
Oxidation of cyclohexanone by acidic bromate, it is necessary to study the effect of concentration of different reactants on the rate of reaction
The kinetics of the Ru (III) catalyzed oxidation of cyclohexanone by acidic bromate was investigated at several initial reactant concentrations (Table A1, Supplementary Information)
Summary
Catalysis by transition metals plays a significant role in understanding the mechanism of redox reactions. A scant attention has been paid towards use of KBrO3 as an oxidant in various metal catalyzed reactions [10] [11]. The utility of ruthenium(III) chloride as a homogeneous catalyst has been reported by several workers [12] [13], but scant attention has been paid to explore catalytic role of ruthenium(III) chloride with potassium bromate as an oxidant. This fact prompted us to undertake the present investigation which consists of Ru(III) catalyzed oxidation of cyclohexanone by bromate in acidic medium
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Surface Engineered Materials and Advanced Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.