Abstract

We have examined the elementary molecular processes responsible for proton transfer and HD exchange in thin ice films for the temperature range of 100-140 K. The ice films are made to have a structure of a bottom D(2)O layer and an upper H(2)O layer, with excess protons generated from HCl ionization trapped at the D(2)OH(2)O interface. The transport behavior of excess protons from the interfacial layer to the ice film surface and the progress of the HD exchange reaction in water molecules are examined with the techniques of low energy sputtering and Cs(+) reactive ion scattering. Three major processes are identified: the proton hopping relay, the hop-and-turn process, and molecular diffusion. The proton hopping relay can occur even at low temperatures (<120 K), and it transports a specific portion of embedded protons to the surface. The hop-and-turn mechanism, which involves the coupling of proton hopping and molecule reorientation, increases the proton transfer rate and causes the HD exchange of water molecules. The hop-and-turn mechanism is activated at temperatures above 125 K in the surface region. Diffusional mixing of H(2)O and D(2)O molecules additionally contributes to the HD exchange reaction at temperatures above 130 K. The hop-and-turn and molecular diffusion processes are activated at higher temperatures in the deeper region of ice films. The relative speeds of these processes are in the following order: hopping relay>hop and turn>molecule diffusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call