Abstract
The mechanism of excitation energy transfer is studied using host−guest systems consisting of green and yellow emitting poly(phenylene vinylene) (PPV) based polymers into which red emitting dyes are dispersed. The photoluminescence from such polymer−dye systems is studied in the steady-state and time resolved. Furthermore, the electroluminescence from devices containing these polymer−dye systems as emissive layer is measured. It is shown that in such disordered polymers, characterized by dispersive exciton transport, energetic resonance between the polymer and the dye is not the only requisite for efficient energy transfer. In addition, the exciton kinetics of the combined polymer−dye system has to be taken into account. Efficient transfer of excitation energy from a disordered polymer to a dye can only occur if, at a certain energy, the polymer-to-dye exciton transfer rate is higher than the intrapolymer exciton migration rate. A consequence of the mechanism described here is that when a dye is dispersed...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.