Abstract

The current study evaluates the potential of partially purified Citrus limon (lemon) peroxidase in the decolorization of a common synthetic triphenylmethane class dye; basic violet 3. Some important process parameters were optimized by OFAT methodology. Along with this, the effect of metal ions and mediators on the process of decolorization was also evaluated. The maximum decolorization (96.34%) of 7.5mg/L dye was achieved at 42U/mL of enzyme dose, 0.25mM of H2O2 and 0.5mM of p-coumaric acid. The pH, temperature and time for maximum decolorization were recorded to be 4.5, 45°C, and 5min, respectively. The presence of metal ions did not exert any drastic influence on the process of decolorization, ensuring it suitable for industrial applications. The optimization and interactive effect of pH, enzyme dose, and dye concentration for maximum decolorization was also investigated by RSM through central composite design matrix. UPLC/MS analyses were performed to identify the degradation products. As a result a mechanistic pathway for degradation of basic violet 3 was proposed. It was also found that degraded products of basic violet 3 showed less phytotoxicity than the dye itself, using Zea mays as test organism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.