Abstract

BackgroundEnzyme based remediation of wastewater is emerging as a novel, efficient and environmentally-friendlier approach. However, studies showing detailed mechanisms of enzyme mediated degradation of organic pollutants are not widely published.ResultsThe present report describes a detailed study on the use of Soybean Peroxidase to efficiently degrade Trypan Blue, a diazo dye. In addition to examining various parameters that can affect the dye degradation ability of the enzyme, such as enzyme and H2O2 concentration, reaction pH and temperature, we carried out a detailed mechanistic study of Trypan Blue degradation. HPLC-DAD and LC-MS/MS studies were carried out to confirm dye degradation and analyze the intermediate metabolites and develop a detailed mechanistic dye degradation pathway.ConclusionWe report that Soybean peroxidase causes Trypan Blue degradation via symmetrical azo bond cleavage and subsequent radical-initiated ring opening of the metabolites. Interestingly, our results also show that no high molecular weight polymers were produced during the peroxidase-H2O2 mediated degradation of the phenolic Trypan Blue.

Highlights

  • Textile dyes are aromatic compounds representing a major class of organic pollutants that are found in the waste effluent discharged by different industries such as textile, petroleum refining, paper and pulp, leather and plastics, wood preservation, etc

  • We report on the use of commercial soybean peroxidase (SBP) for the degradation of a di-azo dye, Trypan Blue

  • The addition of Soybean Peroxidase (SBP) or H2O2 alone did not show any degradation of the dye

Read more

Summary

Results

The present report describes a detailed study on the use of Soybean Peroxidase to efficiently degrade Trypan Blue, a diazo dye. In addition to examining various parameters that can affect the dye degradation ability of the enzyme, such as enzyme and H2O2 concentration, reaction pH and temperature, we carried out a detailed mechanistic study of Trypan Blue degradation. HPLC-DAD and LC-MS/MS studies were carried out to confirm dye degradation and analyze the intermediate metabolites and develop a detailed mechanistic dye degradation pathway

Conclusion
Introduction
Results and discussion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call