Abstract

The utilization of pulsed laser ablation in liquids (PLALs) for preparing gold nanoparticles (Au NPs) in organic solvents holds immense potential across diverse applications. This study introduces a compact and low-power microchip laser (MCL) system (average power 50 mW; pulse energy 0.5 mJ). Due to its compactness, an MCL is advantageous for easy manipulation in organic laboratories during the production of metal nanoparticles (NPs) for research and development purposes. In this research, poly(N-vinyl-2-pyrrolidone) (PVP) is used as a stabilizing agent for the preparation of Au NPs in organic solvents (CH2Cl2, CHCl3, 2-PrOH, MeCN, DMF, EtOH, NMP, and DMSO). Our experimental results demonstrate that the particle size remains consistent across all the organic solvents. This study explores the productivity of Au NPs in different organic solvents, revealing the necessity of multiple laser pulses to generate Au NPs successfully. This phenomenon, known as the ‘incubation effect,’ is linked to the lower pulse energy in the experimental condition and the thermal conductivity of the solvents. The findings emphasize the crucial role of solvent properties in determining the Au NPs productivity in PLAL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call