Abstract

Samarium diiodide (SmI2) is one of the most widely used single-electron reductants available to organic chemists because it is effective in reducing and coupling a wide range of functional groups. Despite the broad utility and application of SmI2 in synthesis, the reagent is used in stoichiometric amounts and has a high molecular weight, resulting in a large amount of material being used for reactions requiring one or more equivalents of electrons. Although few approaches to develop catalytic reactions have been designed, they are not widely used or require specialized conditions. As a consequence, general solutions to develop catalytic reactions of Sm(II) remain elusive. Herein, we report mechanistic studies on catalytic reactions of Sm(II) employing a terminal magnesium reductant and trimethylsilyl chloride in concert with a noncoordinating proton donor source. Reactions using this approach permitted reductions with as little as 1 mol % Sm. Mechanistic studies provide strong evidence that during the reaction, SmI2 transforms into SmCl2, therefore broadening the scope of accessible reactions. Furthermore, this mechanistic approach enabled catalysis employing HMPA as a ligand, facilitating the development of catalytic Sm(II) 5- exo- trig ketyl olefin cyclization reactions. The initial work described herein will enable further development of both useful and user-friendly catalytic reactions, a long-standing, but elusive goal in Sm(II) chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.