Abstract

The enzyme 1-aminocyclopropane-1-carboxylate deaminase (ACPC deaminase) from a pseudomonad is a pyridoxal phosphate (PLP) linked catalyst which fragments the cyclopropane substrate to alpha-ketobutyrate and ammonia [Honma, M., & Shimomura, T. (1978) Agric. Biol. Chem. 42, 1825]. Enzymatic incubations in D2O yield alpha-ketobutyrate with one deuterium at the C-4 methyl group and one deuterium at one of the C-3 prochiral methylene hydrogens. Stereochemical analysis of the location of the C-3 deuteron was accomplished by in situ enzymatic reduction to (2S)-2-hydroxybutyrate with L-lactate dehydrogenase and conversion to the phenacyl ester. The C-3 hydrogens of the (2S)-2-hydroxybutyryl moiety are fully resolved in a 250-MHz NMR spectrum. Absolute assignment of 3S and 3R loci was obtained with phenacyl (2S,3S)-2-hydroxy[3-2H]butyrate generated enzymatically by D-serine dehydratase action on D-threonine. ACPC deaminase shows a stereoselective outcome with a 3R:3S deuterated product ratio of 72:28. 2-Vinyl-ACPC is also a fragmentation substrate with exclusive regiospecific cleavage to yield the straight-chain keto acid product 2-keto-5-hexenoate. The D isomer of vinylglycine is processed to alpha-ketobutyrate and ammonia at 8% the Vmax of ACPC, while L-vinylglycine is not a substrate. It is likely that ACPC and D-vinylglycine yield a common intermediate--the vinylglycine-PLP-p-quinoid adduct--which is then protonated sequentially at C-4 and then C-3 to account for the observed deuterium incorporation. The D isomers of beta-substituted alanines (fluoroalanine, chloroalanine, and O-acetyl-D-serine) partition between catalytic elimination and enzyme inactivation. Each shows a different partition ratio, arguing against the common aminoacrylyl-PLP as the inactivating species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call