Abstract

The novel iridium(III) hydride [(kappa(3)-P,P,P-NP(3))IrH(3)] [NP(3) = N(CH(2)CH(2)PPh(2))(3)] was synthesized and characterized by spectroscopic methods and X-ray crystallography. Its reactivity with strong (HBF(4)) and medium-strength [the fluorinated alcohols 1,1,1-trifluoroethanol (TFE) and 1,1,1,3,3,3-hexafluoroisopropanol (HFIP)] proton donors was investigated through low-temperature IR and multinuclear NMR spectroscopy. In the case of the weak acid TFE, the only species observed in the 190-298 K temperature range was the dihydrogen-bonded adduct between the hydride and the alcohol, while with the stronger acid HBF(4), the proton transfer was complete, giving rise to a new intermediate [(kappa(3)-P,P,P-NP(3))IrH(4)](+). With a medium-strength acid like HFIP, two different sets of signals for the intermediate species were observed besides dihydrogen bond formation. In all cases, the final reaction product at ambient temperature was found to be the stable dihydride [(kappa(4)-NP(3))IrH(2)](+), after slow molecular dihydrogen release. The nature of the short-living species was investigated with the help of density functional theory calculations at the M05-2X//6-31++G(df,pd) level of theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.