Abstract

The mechanism of Mycobacterium smegmatis G (MbsG), a flavin-dependent l-lysine monooxygenase, was investigated under steady-state and rapid reaction conditions using primary and solvent kinetic isotope effects, substrate analogs, pH and solvent viscosity effects as mechanistic probes. The results suggest that l-lysine binds before NAD(P)H, which leads to a decrease in the rate constant for flavin reduction. l-lysine binding has no effect on the rate of flavin oxidation, which occurs in a one-step process without the observation of a C4a-hydroperoxyflavin intermediate. Similar effects were determined with several substrate analogs. Flavin oxidation is pH independent while the kcat/Km and kred/KD pH profiles for NAD(P)H exhibit single pKa values of ∼6.0, with increasing activity as the pH decreases. At lower pH, the enzyme becomes more uncoupled, producing more hydrogen peroxide and superoxide. Hydride transfer is partially rate-limiting at neutral pH and becomes more rate-limiting at low pH. An inverse solvent viscosity effect on kcat/Km for NAD(P)H was observed at neutral pH whereas a normal solvent viscosity effect was observed at lower pH. Together, the results indicate a unique mechanism where a rate-limiting and pH-sensitive conformational change occurs in the reductive half-reaction, which affects the efficiency of lysine hydroxylation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.