Abstract
E.p.r. spectroscopy of the trimethylamine and dimethylamine dehydrogenases of Hyphomicrobium X indicates that the substrate-reduced forms of these enzymes exist in the triplet state, which arise through interaction of a reduced [4Fe-4S] cluster and flavosemiquinone, with e.p.r. signals which differ in detail from those of the trimethylamine dehydrogenase of bacterium W3A1. Under certain conditions the intramolecular electron transfer between the flavoquinol form of 6-S-cysteinyl-FMN and the [4Fe-4S] cluster in all three dehydrogenases was much slower than the preceding reduction of the flavin to the flavoquinol form. Trimethylamine dehydrogenases from both organisms show a time-dependent broadening of the e.p.r. signals centred around g = 2 after mixing with trimethylamine. The broadening of the e.p.r. signals could be correlated with an unexpected dependence of the rate of formation of the triplet state on substrate concentration. A model which accounts in a qualitative manner for the substrate dependence of the formation of the triplet state in the trimethylamine dehydrogenase of Hyphomicrobium X is proposed. The binding of the substrate to the reduced form of the enzyme seems to result in a conformational change of the enzyme to a form in which the rate of intramolecular electron transfer is decreased. This finding may be correlated with the observation of hyperbolic substrate inhibition for both trimethylamine dehydrogenases. The results indicate the transfer of an electron to the [4Fe-4S] cluster to be an obligatory step in catalysis and suggest that the transfer of electrons from these enzymes to electron acceptors is mediated solely through the [4Fe-4S] cluster.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.