Abstract

A cometary ice analog sample consisting primarily of carbon suboxide ice (C 3O 2) was produced from the irradiation of its precursor, carbon monoxide. This carbon suboxide sample was subjected to irradiation with energetic electrons at 10 K to simulate the interaction of carbon suboxide-rich cometary analog ices with ionizing radiation. The destruction of carbon suboxide as well as the production of the primary degradation products, dicarbon monoxide (C 2O), and carbon monoxide (CO), were monitored quantitatively by infrared spectroscopy in situ; the gas phase was simultaneously sampled via quadrupole mass spectrometry. A kinetic model was produced to help explain the decomposition kinetics of carbon suboxide in cometary ices and to infer the underlying reaction mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.