Abstract

BackgroundAccelerated proliferation of solid tumor and hematologic cancer cells is related to accelerated transcription of ribosomal DNA by the RNA polymerase I to produce elevated level of ribosomal RNA. Therefore, down-regulation of RNA polymerase I transcription in cancer cells is an important anticancer therapeutic strategy. MethodsA variety of methods were used, including cloning, expression and purification of protein, electrophoretic mobility shift assay (EMSA), circular dichroic (CD) spectroscopy, CD-melting, isothermal titration calorimetry (ITC), chromatin immunoprecipitation (Ch-IP), RNA interference, RT-PCR, Western blot, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) cell assay. ResultsOur results showed that 2,4-disubstituted quinazoline derivative Sysu12d could down-regulate c-myc through stabilization of c-myc promoter G-quadruplex, resulting in down-regulation of nucleolin expression. Sysu12d could also disrupt nucleolin/G-quadruplex complex. Both of the above contributed to the down-regulation of ribosomal RNA synthesis, followed by activation of p53 and then cancer cell apoptosis. ConclusionsThese mechanistic studies set up the basis for further development of Sysu12d as a new type of lead compound for cancer treatment. General significance2,4-Disubstituted quinazoline derivatives may have multi-functional effect for cancer treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.