Abstract

We present a theoretical extension of the previously published bicarbonate hydrogenation to formate and formic acid dehydrogenation catalysed by FeII complexes bearing the linear tetraphosphine ligand tetraphos-1. The hydrogenation reaction was found to proceed at the singlet surface with two competing pathways: A) H2 association to the Fe-H species followed by deprotonation to give a Fe(H)2 intermediate, which then reacts with CO2 to give formate. B) CO2 insertion into the Fe-H bond, followed by H2 association and subsequent deprotonation. B was found to be slightly preferred with an activation energy of 22.8 kcal mol-1 , compared to 25.3 for A. Further we have reassigned the Fe-H complex, as a Fe(H)(H2 ), which undergoes extremely rapid hydrogen exchange.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.