Abstract

Quantum chemical DFT calculations at the B3LYP/6-31G(d) level have been used to study the stereochemical course of the photochemical cycloaddition of enone 9 with dienes. The observed products of this photochemically induced cycloaddition showed a stereoselectivity, which is opposite to what would be expected by FMO considerations. The quantum chemical calculations revealed that the unusual stereoselectivity of the reaction can be rationalized by assuming a stereospecific photochemical cis-trans isomerization of enone 9 to trans isomer 9a followed by a thermal Diels-Alder reaction of the diene onto the highly reactive trans enone. The photochemical reaction step involves the selective formation of a twisted triplet intermediate, which accounts for the selectivity of the reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.