Abstract

Covalent organic frameworks (COFs) are periodic two- and three-dimensional (2D and 3D) polymer networks with high surface areas, low densities, and designed structures. Despite intense interest in framework materials, the nucleation and growth processes of COFs, and even of more established metal-organic frameworks (MOFs), are poorly understood. The kinetics of COF growth under varied reaction conditions provides mechanistic insight needed to improve their crystallinity and rationally synthesize new materials. Such kinetic measurements are unprecedented and difficult to perform on typical heterogeneous COF reaction mixtures. Here we synthesize 2D boronate ester-linked COF-5 under conditions in which the monomers are fully soluble. These homogeneous growth conditions provide equal or better material quality compared to any previous report and enable the first rigorous studies of the early stages of COF growth. COF-5 forms within minutes, and the precipitation rate is readily quantified from optical turbidity measurements. COF-5 formation follows an Arrhenius temperature dependence between 60-90 °C with an activation energy of 22-27 kcal/mol. The measured rate law includes a second order in both boronic acid and catechol moieties, and inverse second order in MeOH concentration. A competitive monofunctional catechol slows COF-5 formation but does not redissolve already precipitated COF, indicating both dynamic covalent bond formation and irreversible precipitation. Finally, stoichiometric H2O provides a 4-fold increase in crystallite domain areas, representing the first rational link between reaction conditions and material quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.